BELMONT BERYLLIUM COPPER ALLOY 4977

2% Beryllium Copper. Trade Designations: Alloy 20C, CDA 825

COMPOSITION — PERCENT						
	NOMINAL	MINIMUM	MAXIMUM			
Copper	97.2	Rema	inder			
Beryllium	2.0	1.90	2.15			
Cobalt*	.5	.35	.65			
Silicon	.25	.20	.35			
Nickel**			.20			
Iron			.25			
Aluminum			.15			
Tin			.10			
Lead			.02			
Zinc			.10			
Chromium			.10			

NEAREST APPLICABLE SPECIFICATIONS				
Centrifugal Continuous Die				
Investment Permanent Mold	MIL-C-22087, Comp. 10 ICI-Cu-2-10780			
Sand	QQ-C-390, Alloy X6 MIL-C-19464, Class II AMS 4890			

^{*}Cobalt plus nickel. ** Nickel is a residual element and shall not be intentionally added to the melt.

PHYSICAL PROPERTIES	ENGLISH UNITS	METRIC UNITS
Melting Point (Liquids) Melting Point (Solids) Density Specific Gravity Coefficient of Thermal Expansion Thermal Conductivity Electrical Conductivity* Specific Heat Modulus of Elasticity (Tension)	1800 F 1575 F .292 lb./cu. in.@ 68 F 8.09 .0000094 per °F from 68 F to 392 F 75 Btu./sq. ft./ft./hr./° F @ 68 F 18 % IACS @ 68 F .10 Btu./lb./° F @ 68 F 18,500 ksi	982 C 857 C 8.09 gm./cu. cm.@ 20 C 8.09 .000017 per °C from 20 C to 200 C .174 cal./sq. cm./cm./sec./°C @ 20 C .104 Megmho-cm. @ 20 C .10 cal./gm./°C @ 20 C 13,000 Kg./sq. mm.

^{*}Volume basis in as-cast condition except for precipitation hardening alloys which are in the full heat treated condition.

CHARACTERISTICS AND USES

Excellent fluidity. One of the best alloys for investment casting and sand casting. Responds to heat treatment. Meets RWMA Class 4 requirements for resistance welding. Used

for general engineering applications - cams, bushings, valves, pump parts, lever arms. Molds for plastic parts, safety tools, ornamental and jewelry parts.

FABRICATION PRACTICES

Stress Relieving Temperature — 400 F or 200C Time at Temperature — 1 Hour per Inch of Section Thickness

Responds to Heat Treatment - Yes

Solution Heat Treating Temperature -

1450-1475 F or 788-802 C

Time at Temperature — 1 Hour per Inch

of Section Thickness

Quenching Medium - Water

Precipitation Hardening Temperature —

650 F or 343 C

Time at Temperature — 3 Hours Quenching Medium — Air

Suitability for being joined by:	
Soldering	. Fair
Brazing	
Oxyacetylene Welding Not Recomme	nded
Carbon Arc Welding	. Fair
Gas Shielded Arc Welding	
Coated Metal Arc Welding	. Fair
Machinability Rating	
(Free Cutting Brace = 100)	20

Belmont: The Non Ferrous Specialists

Unmatched Variety of Non Ferrous Metals and Alloys—
 Standard and Custom Compositions and Shapes—

Casting Metals, Alloys, Additions • Joining Metals & Alloys • Low-Melting (Fusible) Alloys
 Cathodic Anodes • Plating Anodes • Wire Specialties • Chemical Metals • Mercury

TYPES OF CASTING

Centrifugal	Permanent Mold
Continuous	Plaster
Die	Sand
Die	Sand
Investment	Other (Pressure)

CASTING CHARACTERISTICS

Effect of Section Size on Soundness	
and Mechanical Properties	.Medium
Patternmakers Shrinkage (in./ft.)	.3/16
Drossing	
Gassing	
Fluidity	
Shrinkage	
Casting Yield	

MECHANICAL PROPERTIES

(TEST BAR VALUES)

	AS CAST (SAND)			HEAT TREATED				
	ENGLISH UNITS		METRIC UNITS		ENGLISH UNITS		METRIC UNITS	
PROPERTY	MIN.	TYP.	MIN.	TYP.	MIN.	TYP.	MIN.	TYP.
Tensile Strength - ksi (kg/mm²) Yield Strength - ksi (kg/mm²)		80	••••	56.2	155.0	160	109.0	112.5
(.5% Extension Under Load) (.2% Offset) Elongation in 2 inches (50mm) - percent		45 20		31.6 20	115.0		80.8 0	1
Hardness Rockwell Compressive Strength - ksi (kg/mm²)		B82		B82	C38	C40	C38	C40
0.1 in. set/in. Impact Strength - ftlbs. Izod	••••	••••	••••	••••		90		63.3
Charpy V-Notch Proportional Limit - ksi (kg/mm²)	••••				100.0	110	70.3	77.3
Fatigue Strength (100 million cycles) - ksi (kg/mm²)	••••	••••		,		24		16.9

GENERAL FOUNDRY PRACTICE

Molding and gating practice should follow procedures for manganese bronze and aluminum bronze as beryllium copper is prone to dross formation also.

Melt in a slightly oxidizing atmosphere. Suggested pouring range 1850° - 2050° F (1010° - 1121° C). Do not overheat as drossing tendency is increased and beryllium losses are aggravated. No melting flux is required, and as beryllium has a great affinity for oxygen it serves as its own deoxidizer, so no deoxidizer is needed. Degas with dry nitrogen if treatment is needed.

INGOT SIZES

2 Section - 5 lb. Ingot, Cut Bar - Cross Section % " x % " x 1 " lengths, 2 " lengths, etc. Also available: 10c, 35c, 50c, 70c, 165c, $\,245c,\,275c.$

